Conditional Variational Encoder

CVAE

Posted by Chaowei FANG on September 29, 2017

CVAE

  • Generative model with conditional information (labels or attributes)
  • Training
    input: sample X and condition Y
    output: X
  • Testing
    input: condition Y and Gaussian noise vector z
    output: reconstructed result

Examples

  • Attribute-conditioned image generation
  • Learning diverse image colorization
  • Forecasting from static images
  • Facial expression editting

Reference

  1. Yan X, Yang J, Sohn K, et al. Attribute2Image: Conditional Image Generation from Visual Attributes[J]. european conference on computer vision, 2015: 776-791.
  2. Deshpande A, Lu J, Yeh M C, et al. Learning Diverse Image Colorization[J]. 2016.
  3. Walker J, Doersch C, Gupta A, et al. An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders[M]// Computer Vision – ECCV 2016. Springer International Publishing, 2016.
  4. Yeh R, Liu Z, Goldman D B, et al. Semantic Facial Expression Editing using Autoencoded Flow[J]. 2016.
  5. Doersch C. Tutorial on Variational Autoencoders[J]. 2016.